МРТ – принцип диагностики и работы. Мрт или магнитно-резонансная томография Электромагнитная томография

    Одним из наиболее результативных способов медицинского обследования, является МРТ или магнитно-резонансная томография, дающая возможность, обрести наиболее точную информацию об:

  • особенностях анатомии человеческого организма,
  • внутренних органов,
  • эндокринной системы,
  • а также возбудимости тканей.

Возможность точно определить место развития паталогического процесса и объема произошедших повреждений, становится основным преимуществом процедуры МРТ, при обнаружении злокачественных опухолей и обследования сосудов.

Что представляет из себя МРТ?

Магнитно-резонансная томография – это исключительный шанс получить точнейшие послойные изображения, области организма, которая исследуется.

Процедура МРТ заключается в стимулирувании электромагнитных волн. Образовывается внушительное магнитное поле, в которое помещается пациет (или часть тела). Затем фиксируется обратный электромагнитный сигнал, поступающий от человеческого организма на компьютер. В итоге, выстраивается изображение.

Магнитно-резонансный томограф, является аппаратом, дающим возможность достичь эффективнейшего диагностирования, определить метаморфозы в функционировании организма и осуществить высочайшее, по точности, изображение изучаемых органов, которое дает результаты, на порядок выше, нежели рентген, компьютерная томография или УЗИ.

МРТ дает возможность обнаружить онкологические заболевания и перечень других не менее опасных болезней, а также замерить быстроту кровотока и течение спинномозговой жидкости.

Аппарат МРТ дает возможность содействовать неизменному состоянию магнетизма в теле человека, при его размещении внутри устройства.
В результате чего, он осуществляет:

  • стимулирование организма с помощью электромагнитных волн, помогая смене стабильной направленности настроенных частиц;
  • приостановку электромагнитных волн и фиксацию тех же излучений, со стороны человеческого организма;
  • обрабатывание принятого сигнала и перестройка его в картинку (изображение).


За основу функционирования МРТ, взят ЯМР принцип, с последовательным обрабатыванием получаемой информации, специализированными программами.

Итоговое изображение – это совсем не фотография или фото-негатив изучаемой части тела или органа. Радиосигналы преобразовываются в высококачественное изображение среза человеческого организма, на экране монитора. Доктора видят органы в разрезе.

Магнитно-Резонансная Томография, является более точным и надежным методом диагностирования, нежели КТ (компьютерная томография), ведь при МРТ не осуществляется применение ионизирующего излучения, наоборот, применяются абсолютно безвредные для организма электромагнитные волны.

История производства и особенности устройства аппарата МРТ

Датой сотворения сего полезнейшего устройства, называют 1973 год, а одним из первых разработчиков, считается – Пол Лотербур. В одном из его трудов был четко описан факт изображения строений организма и органов, благодаря применению магнитных и радиоволн.

Однако, Лотербур не единственный изобретатель, приложивший руку к изобретению МРТ. За 27 лет до этого, Ричард Пурселл и Феликс Блох, работая в Гарвардском Университете, испытывали явление, основой которого являлось качество, характерное для атомных ядер (изначальное вбирание энергии и ее последующее «отдавание», то есть отделение с возвращением к исходному состоянию). Спустя шесть лет, за свою работу, ученые были удостоены Нобелевской премии.

Их открытие, стало, в определенном роде, прорывом для развития суждения по ЯМР.
Удивительный феномен подвергался изучению многими ученными, не только физиками, но и математиками, и химиками. Показ первого Компьютерного Томографа, с перечнем опытов, был осуществлен в 1972 году. В результате, был выявлен новейший способ диагностирования, позволяющий подробно изображать наиболее важные структуры человеческого организма.

Впоследствии, некто Лотербур, хоть и не в полной мере, но высказал принцип функционирования МРТ. Его работа стала толчком для развития и дальнейших исследований в данной отрасли.


Немало времени уделяли надзору над недоброкачественными опухолями.
Исследования, производящиеся Лотербуром, продемонстрировали: они кардинально разнятся со здоровыми клетками. Разница состоит в параметрах добываемого сигнала.

И так, можно смело утверждать, что стартом новейшей эры развития диагностирования с помощью МРТ, являются семидесятые годы прошлого века. Именно в тот период времени, Ричард Эрнст, предложил осуществление МРТ с применением особенного метода – кодирования (и радиочастотного, и фазового). Метод, который был предложен тогда, используют доктора и в наши дни. В восьмидесятом году прошлого века было продемонстрировано изображение, на создание которого было затрачено всего 5 минут, а через шесть лет, это время составляло уже 5 секунд. Стоит отметить, что качество изображения при этом, не изменилось.

Через 8 лет после первого изображения, внушительный рывок произошел и в ангиографии, дающей возможность показать кровоток человека без вспомогательного введения в кровь лекарств, выполняющих функцию контраста.

Развитие данной отрасли стало историческим моментом для современной медицины.
МРТ используется в диагностировании болезней:

  • позвоночника;
  • суставов;
  • головного и спинного мозга;
  • нижнего мозгового придатка;
  • внутренних органов;
  • парных молочных желез внешней секреции и так далее.

Потенциал открытого метода , дает возможность выявлять болезни на начальных стадиях и находить аномалии, нуждающиеся в безотлагательном лечении или в неотложном хирургическом вмешательстве.

Процедура МРТ , осуществленная на нынешнем ультрасовременном оборудовании, позволяет:

  • получить точнейшую визуализацию внутренних органов, тканей;
  • накопить нужные данные о вращении спинномозговой жидкости;
  • выявить уровень активности областей коры головного мозга;
  • отслеживать газообмен, происходящий в тканях.

МРТ значительно и в лучшую сторону отличим от прочих методов диагностирования:

  • Он не предусматривает манипуляций с хирургическими инструментами;
  • Он эффективен и безопасен;
  • Процедура достаточно распространена, доступна и необходима при изучении наиболее серьезных случаев, нуждающихся в подробном изображении случающихся в организме метаморфоз.

Принцип работы Магнитно-Резонансного Томографа (МРТ)


Процедура производится следующим образом. Пациента размещают в специализированное узкое углубление (своего рода тоннель), в котором он обязательно должен быть размещен горизонтально. Длительность процедуры составляет от четверти до половины часа.

По завершении процедуры, человеку на руки отдают изображение, которое формируется с помощью ЯМР метода – физического явления магнитного и ядерного резонанса, связанного с особенностями протонов. Благодаря радиочастотному импульсу, в образованном при помощи аппарата электромагнитном поле преобразуется излучение, превращающееся в сигнал. Затем он принимается и подвергается обработке специализированной программой для компьютера.

На монитор выводится серия изображений срезов организма. Каждый изучаемый срез, обладает индивидуальной толщиной. Этот метод отображения похож на технологию удаления всего лишнего над или под слоем. Немаловажную роль, при этом, выполняют конкретные элементы объема и части среза.

Из-за того, что тело человека на 90% состоит из жидкости, осуществляется стимулирование протонов атомов водорода. Метод МРТ, дает возможность взглянуть в организм и определить серьезность недуга без непосредственного физического вмешательства.

Устройство МРТ

Современный аппарат МРТ, состоит из таких частей:

  • магнит;
  • катушки;
  • генератор радиоимпульсов;
  • клетка Фарадея;
  • ресурс питания;
  • охладительная система;
  • системы, обрабатывающие получаемые данные.

В последующих пунктах мы изучим работу части отдельных элементов аппарата МРТ!

Магнит

Производит стабилизированное поле, которое характеризуется равномерностью и внушительной эмфазой (напряженностью). Из заключительного показателя выявляется мощность устройства. Упомянем еще раз, именно от мощности зависит то, насколько высокое качество обретет визуализация после окончания терапии.

Аппараты делятся на 4 группы:

  • Низкопольные – оснащение начального типа, сила поля менее 0.5 Тл;
  • Среднепольные – сила поля от 0,5-1 Тл;
  • Высокопольные – характеризуются великолепной скоростью обследования, хорошо просматриваемой визуализаций, даже если человек двигался при процедуре. Сила поля – 1-2 Тл;
  • Сверхвысокопольные – более 2 Тл. Применяются исключительно при исследованиях.

Также стоит отметить такие разновидности применяемых магнитов:

Постоянный магнит – производится из сплавов, имеющих, так называемые Ферромагнитные свойства. Плюсами данных элементов, являет то, что им нет необходимости понижать температуру, потому что им не нужно энергии для поддержки однородного поля. Из минусов, стоит отметить внушительную массу и незначительную напряженность. Кроме прочего, такие магниты, восприимчивы к изменениям температур.

Сверхпроводимый магнит – катушка, созданная из особого сплава. Через данную катушку, происходит пропуск огромных токов. Благодаря аппаратам с подобными катушками, в них создается внушительное по силе магнитное поле. Однако, в сравнении с предыдущим магнитом, для сверхпроводимого магнита, необходима охладительная система. Из минусов, стоит отметить значительный расход жидкого гелия при незначительных затратах энергии, внушительные затраты на эксплуатирование агрегата, экранирование в обязательном порядке. Кроме прочего, существует риск выброса жидкости для охлаждения при утрате сверх проводимых свойств.

Резистивный магнит – не нуждается в применении специализированных систем охлаждения, и могут производить относительно однородное поле для осуществления сложных испытаний. Из минусов, стоит отметить внушительную массу, составляющую около пяти тонн и повышающуюся в случае экранирования.

Передатчик

Вырабатывает колебания и импульсы радиочастот (формы прямоугольника и сложной). Данное изменение дает возможность достичь возбуждения ядер, улучшить контрастность картинки, получаемой в результате обработки данных.

Сигнал передает на переключатель, который оказывает действие на катушку, образуя магнитное поле, обладающее влиянием на спиновую систему.

Приемник

Это усилитель сигнала с высочайшей чувствительностью и незначительным шумом, который работает на сверхвысоких частотах. Получаемый отзыв видоизменяется из мГц в кГц (то есть от больших частот, к меньшим).

Прочие запчасти

Для более подробной детализации картинки несут ответственность, также, датчики регистрации, расположенные около изучаемого органа. Процедура МРТ не представляет никакой опасности для человека, осуществив излучение сообщаемой энергии, протоны перетекают в изначальное состояние.

Чтобы качество визуализации было лучше, исследуемому человеку могут ввести вещество контрастного типа на основе Gadolinium, которое не обладает побочными действиями. Вводится он при помощи шприца, который автоматизировано, подсчитывает необходимую дозу и быстроту введения препарата. Средство поступает в организм синхронно с протекающей процедурой.

Качество МРТ исследования, зависит от большого количества факторов – это и состояние магнитного поля, катушка, которая применяется, какой контрастный препарат и даже доктор, проводящий процедуру.

Преимущества МРТ:

  • высочайшая вероятность получить наиболее точную визуализацию исследуемой части тела или органа;
  • постоянно развивающееся качество диагностирования;
  • отсутствие негативных воздействий на человеческий организм;

Аппараты разнятся по силе генерируемого поля и «распахнутости» магнита. Чем выше мощность, тем скорее проводится исследование и тем лучше качество визуализации.

Открытые аппараты, обладают C-образной формой и считаются наилучшим для исследования людей, подверженных тяжелым формам клаустрофобии. Изначально они разрабатывались для осуществления вспомогательных внутри-магнитных процедур. Также, стоит отметить, что эта разновидность устройства значительно слабее, нежели закрытый аппарат.
Обследование с помощью МРТ - одно из наиболее результативных и неопасных методов диагностирования и максимально информативно для подробного изучения спинного и головного мозга, позвоночника, органов брюшной полости и малого таза.

Видео "Как устроен МРТ":

Также предлагаем Вашему вниманию несколько видео об устройстве и приципу работы МРТ:

Среди современных методов обследования особое внимание необходимо уделить тому, как работает МРТ. Для неосведомленных пациентов такая диагностика кажется пугающей, что породило кучу мифов о томографии. Сам томограф похож на капсулу необычного прибора, непонятны процессы проходящие внутри. Всё неизвестное вызывает сомнение, поэтому пациенты не всегда соглашаются пройти диагностику на томографе. Но это в корне неправильно! Полная и детальная информация, полученная с помощью магнитно-резонансной томографии необходима для точной постановки диагноза и выработки правильной схемы лечения. При этом !

Изобретение магнитно-резонансного сканирования стало прорывом в диагностике. До этого увидеть все органы так чётко можно было только при вскрытии человека после его смерти. Томография позволила определять скорость движения крови по сосудам, состояние костной, хрящевой ткани, активность головного мозга. Все внутренние органы, включая , молочные железы, зубы, носовые пазухи можно рассмотреть и даже понять, как они работают, при проведении обследования на томографе.

Принцип работы МРТ кроется в воздействии на ядра водорода, которые есть в любой клетке человека. Сразу после открытия этого явления (1973 год) оно называлось ядерно-магнитным резонансом. Но после аварии на Чернобыльской АЭС (1986 год) со словом «ядерный» начали складываться отрицательные ассоциации. Поэтому данный метод диагностики переименовали в МРТ, что не изменило его сути и того, как метод работает.

Принцип действия магнитно-резонансного сканирования заключается в следующем - под влиянием сильного магнитного поля ядра водорода начинают двигаться, выстраиваются в одной очерёдности. По окончании действия магнита, когда он больше не работает, атомы приходят в движение, начинают колебаться все вместе, выделяя при этом энергию. Томограф фиксирует показания энергии, компьютерная программа их обрабатывает, выдавая трехмерную картинку органа. В этом состоит для МРТ принцип его работы.

В результате обследования получается серия снимков, есть возможность воссоздать трёхмерное изображение проблемного участка, повернуть его со всех сторон, рассмотреть в любой плоскости. Это важно при обследовании, постановке диагноза.

Принцип работы томографа основывается на колебании магнитных волн — никакого радиационного облучения

Когда лучше делать томографию?

При постановке диагноза не всегда назначают пройти МРТ. И дело не в том, что это дорогая процедура, возможно и . Для этого метода есть специальные направления использования. Томограф целесообразно применять при определении диагноза, перед хирургическим вмешательством для уточнения деталей операции, после её проведения для осмотра результатов. МРТ делают при длительном лечении для корректировки терапии и оценки эффективности проведённых процедур. Это безопасный способ обследования, его можно проводить при необходимости .

МРТ необходимо делать при диагностике следующих болезней:

  • формирование опухолей доброкачественного и злокачественного характера;
  • аневризмы сосудов кровеносной системы;
  • инфекции суставов и костной ткани;
  • болезни сердца и сосудов;
  • нарушения функций головного и спинного мозга;
  • патологии воспалительного характера, например, мочеполовой системы;
  • оценка оперативного лечения и химиотерапии при онкологии;
  • травмы внутренних органов и мягких тканей.

Магнитно-резонансную томографию не назначают с целью разработки методов профилактики, а только по конкретно поставленной задаче для точного диагностирования.

Альтернативные способы постановки диагноза

Кроме магнитно-резонансного сканирования, существуют и другие методы диагностики - компьютерная томография, УЗИ, ЭЭГ. При этом выбрать между иногда бывает непросто, ведь работают они по-разному. Сравнение методов представлено в таблице.

Название обследования

Преимущества

Недостатки

Магнитно-резонансная томография - МРТ

Работает без радиации. Выявляет многие заболевания на ранних стадиях. Не производит облучения, поэтому может проводиться детям и беременным женщинам. В результате получаются точные детальные изображения.

Есть ограничения к проведению, например, металлические включения в теле пациента. Томограф с ними плохо работает.

Компьютерная томография - КТ

Хорошо показывает состояние костной ткани. Нет противопоказаний по поводу металлических включений в теле, как при МРТ. Аппарат работает быстро.

Человек получает ионизирующее облучение в процессе сеанса.

Ультразвуковое исследование - УЗИ

Нет противопоказаний к проведению данного обследования. Аппарат работает на основе резонансных волн.

Этот метод не позволяет оценить состояние костной ткани, некоторых внутренних органов, например, желудка, лёгких. Данные не отличаются точностью, как при МРТ.

Электроэнцефалография - ЭЭГ

Высокоточное обследование заболеваний головного мозга. Работает при любом диагнозе, поскольку не имеет противопоказаний.

Не выявляет наличие опухолей, способ неточный, так как на результаты влияют эмоции пациента.

Каждый метод диагностики, включая МРТ, имеет свои отрицательные и положительные стороны, поэтому используется в своей области медицины. Оптимальный вариант выбирается на основе того, как работает то или иное оборудование.

Когда применяют контраст?

Иногда перед проведением обследования в вену пациента вводится контрастное вещество. Это необходимо для получения на снимках более чёткого изображения некоторых участков. С ним МРТ работает более детализировано. Так бывает при диагностике опухолей. Контрастное вещество накапливается в новообразованиях и дополнительно подсвечивает их на изображениях. При диагностировании аневризмы сосудов контрастом вычерчивается целая схема кровеносной системы, по которой врачу легче выявить нарушения.

Контрастным веществом при МРТ служит гадолиний. Он работает для подсветки кровеносных сосудов и выводится почками из организма, хорошо переносится пациентами, редко вызывает аллергическую реакцию. При его применении существуют определённые противопоказания. Поэтому перед введением препарата проводят пробы на его переносимость.

Противопоказано применение контрастного вещества:

  • лицам с аллергической реакцией на гадолиний;
  • беременным и кормящим женщинам;
  • людям, больным сахарным диабетом;
  • пациентам с хроническими болезнями почек.

Гадолиний после проведения процедуры томографии выводится через несколько часов через почки. Лишняя нагрузка на них может спровоцировать обострение хронических патологий. Именно поэтому при больных почках контрастом не пользуются.

В каких случаях нельзя делать томографию?

Существуют серьёзные ограничения для проведения магнитно-резонансного сканирования:

  • беременность на ранних сроках;
  • клаустрофобия;
  • психические нарушения, когда человек не может продолжительное время находиться в неподвижном положении, контролировать своё состояние;
  • металлические включения в теле пациента - штифты, клипсы на сосудах, скобы, протезы, спицы;
  • вживлённые электронные устройства, которые работают постоянно, их невозможно убрать при проведении томографии, например, кардиостимуляторы;
  • эпилепсия;
  • татуировки, выполненные краской с металлическими частицами;
  • тяжёлое физическое состояние пациента, например, постоянное нахождение на аппарате искусственного дыхания.

При компьютерной томографии таких противопоказаний нет. Назначают её при невозможности сделать МРТ. Такое обследование подходит там, где не работает томограф.

Металлические фрагменты в организме делают изображения нечёткими, их будет трудно расшифровывать. Электронные устройства ломаются под влиянием сильного магнита. В применении томографа нужно соблюдать ограничения, чтобы избежать таких неприятностей.

Подготовка к обследованию

Положительной стороной метода магнитно-резонансного сканирования является почти полное отсутствие подготовки к диагностике. Но врачи советуют за несколько дней перед сеансом томографии и не кушать много тяжелой для пищи. Хотя это остаётся на уровне рекомендаций. Если будет использоваться контраст, то лучше плотно поесть. Это поможет избежать приступов тошноты.

Перед процедурой нужно снять все металлические украшения, запонки, часы, очки, съёмные зубные протезы. На одежде не должно оставаться деталей из металла. В современных медицинских диагностических центрах выдают комплекты одноразовой одежды для обследования. Лучшее переодеться в неё. Если в своей одежде осталась незамеченная деталь из металла, то или шеи впоследствии может болеть голова от присутствия на одежде постороннего железного предмета.

Устройство для сканирования представляет собой тоннель, в который въезжает стол с пациентом. Важно не двигаться при обследовании, тогда изображения получатся чёткими и качественными. Чтобы не произошло случайного шевеления конечностями, руки и ноги пациента закрепляют к столу мягкими ремнями.

МРТ можно без вреда использовать для диагностики любого органа, процедура безболезненна

Как проходит процедура?

В тоннеле томографа пациент не будет чувствовать дискомфорт, процедура безболезненная. Иногда поступают жалобы на резкие, непривычные звуки, которые издаёт аппарат во время работы. В некоторых центрах выдают наушники с приятной музыкой или беруши, их можно взять и из дома. В руках у пациента будет кнопка связи с персоналом. Если человек почувствует себя плохо, нужно нажать на неё, сеанс томографии прервётся.

Весь персонал находится в другой комнате, работает с компьютерами. Но пациент не остается один, за ним наблюдают через окно. Процедура магнитно-резонансной томографии вполне комфортная. В среднем сеанс длится 40 минут, с применением контрастного вещества немного дольше. Внутренний объём у аппарата МРТ достаточный. Человек не лежит там, как в узкой коробке. Ему хватает воздуха, и пространства. Психологическое состояние у здорового человека не страдает и остаётся в норме. Многим пациентам даже интересно опробовать такой метод диагностики и побывать в томографе, узнать, как именно он работает.

Обработка результатов

Для расшифровки изображений после МРТ нужны специалисты, которые по малейшим изменениям могут диагностировать патологии. Подготовка заключения занимает несколько дней, но первые выводы врач сообщает сразу. Резонансные участки видны на снимках чётко - это могут быть изменения внутренних органов, наличие жидкости (где её не должно быть). Такая патология говорит о внутреннем кровотечении или инфекции.

Заключение лаборанта после магнитно-резонансной томографии является только перечислением увиденных изменений. Например, повреждение связок, наличие опухоли, изменение структуры, формы и размера кровеносных сосудов в определённом месте. Диагноз будет ставить врач, направивший на обследование. Не нужно самостоятельно пытаться определить болезнь по заключению. Для этого необходимы ещё дополнительные обследования и анализы.

В 1973 году американский химик Пол Лотербур опубликовал в журнале Nature статью под названием «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса». Позднее британский физик Питер Мэнсфилд предложит более совершенную математическую модель получения изображения целого организма, а в 2003 году исследователи получат Нобелевскую премию за открытие метода МРТ в медицине.

Немалый вклад в создание современной магнитно-резонансной томографии внесет и американский ученый Реймонд Дамадьян, отец первого коммерческого аппарата МРТ и автор работы «Обнаружение опухоли с помощью ядерного магнитного резонанса», опубликованной в 1971 году.

Но справедливости ради стоит отметить, что задолго до западных исследователей, в 1960 году, советский ученый Владислав Иванов уже подробно изложил принципы МРТ, тем не менее авторское свидетельство он получил лишь в 1984 году… Давайте же оставим споры об авторстве, и рассмотрим наконец в общих чертах принцип работы магнитно-резонансного томографа.

В наших организмах очень много атомов водорода, а ядро каждого атома водорода — это один протон, который можно представить в виде маленького магнитика, существующего благодаря наличию у протона ненулевого спина. То что ядро атома водорода (протон) имеет спин, - это значит что оно как бы вращается вокруг своей оси. При этом известно, что у ядра водорода есть положительный электрический заряд, а вращающийся вместе с наружной поверхностью ядра заряд — это подобие маленького витка с током. Получается, что каждое ядро атома водорода — это миниатюрный источник магнитного поля.

Если теперь много ядер атомов водорода (протоны) поместить во внешнее магнитное поле, то они начнут пытаться сориентироваться по этому магнитному полю подобно стрелкам компасов. Однако в процессе такой переориентации ядра начнут прецессировать, (как прецессирует ось гироскопа при попытке его наклонить), потому что магнитный момент каждого ядра оказывается связан с механическим моментом ядра, с наличием у него упомянутого выше спина.

Допустим, ядро водорода поместили во внешнее магнитное поле с индукцией 1 Тл. Частота прецессии в этом случае составит 42,58 МГц (это так называемая ларморовская частота для данного ядра и для данной индукции магнитного поля). И если теперь оказать дополнительное воздействие на это ядро электромагнитной волной с частотой 42,58 МГц, возникнет явление ядерного магнитного резонанса, то есть амплитуда прецессии возрастет, поскольку вектор общей намагниченности ядра станет больше.

И таких ядер, способных прецессировать и попадать в резонанс, в наших телах миллиард миллиардов миллиардов. Но поскольку в режиме обычной повседневной жизни магнитные моменты всех ядер водорода и других веществ в нашем теле друг с другом взаимодействуют, то общий магнитный момент всего тела равен нулю.

Действуя радиоволнами на протоны, получают резонансное усиление колебаний (увеличение амплитуд прецессий) этих протонов, а по окончании внешнего воздействия протоны стремятся вернуться к своем исходным состояниям равновесия, и тогда уже они сами излучают фотоны радиоволн.

Таким образом в аппарате МРТ тело человека (или какое-нибудь другое исследуемое тело или предмет) превращается периодически то в набор радиоприемников, то в набор радиопередатчиков. Исследуя таким образом участок за участком тела, аппарат строит пространственную картину распределения атомов водорода в теле. И чем более высока напряженность магнитного поля томографа — тем больше атомов водорода, связанных с другими атомами, расположенными рядом, можно исследовать (тем выше разрешение магнитно-резонансного томографа).

Современные медицинские томографы в качестве источников внешнего магнитного поля содержат , охлаждаемые жидким гелием. В некоторых томографах открытого типа для этой цели используются .

Оптимальная индукция магнитного поля в аппарате МРТ составляет сегодня 1,5 Тл, она позволяет получать довольно качественные снимки многих частей тела. При индукции менее 1 Тл не получится сделать качественный снимок (достаточно высокого разрешения), например малого таза или брюшной полости, однако для получения обычных снимков МРТ головы и суставов подходят и такие слабые поля.

Для правильной пространственной ориентации, в магнитно-резонансном томографе кроме постоянного магнитного поля используются еще и градиентные катушки, создающие дополнительное градиентное возмущение в однородном магнитном поле. В результате наиболее сильный резонансный сигнал локализуется более точно в том или ином срезе. Мощность и параметры действия градиентных катушек — наиболее значимые показатели в МРТ — от них зависит разрешение и быстродействие томографа.

14.10.2016

История открытия МРТ, Принцип работы магнитно-резонансной томографии. Мощность аппарата МРТ. Что лучше аппарат в 0,5 тесла или в 3 тесла. В чем отличие низкопольных (0,1 Тесла) и высокопольных аппаратов (3,0 Тесла)

В 1956 году в Мюнхене в Германии было образована международная электротехническая комиссия «Общество Тесла». Все машины МРТ откалиброваны в единицах " Тесла ". Сила магнитного поля измеряется в Тесла или в единицах Гаусс. Чем сильнее магнитное поле, тем большее количество радиосигналов, которые могут быть получены из атомов тела и, следовательно, тем выше качество изображения МРТ. 1 Тесла = 10000 Гаусс

  • Низкое поле МРТ = до 0,2 Тесла (2000 Гаусс)
  • Среднее поле МРТ = от 0,2 до 0,6 Тесла (от 2000 Гаусс до 6000 Гаусс)
  • Высокое поле МРТ = от 1,0 до 1,5 Тесла (от 10000 Гаусс до 15000 Гаусс)

В 1937 году профессор Колумбийского университета Исидор И. Раби, работая в Пупинской физической лаборатории в Колумбийском университете, Нью-Йорк, отметил квантовое явление, которое было названо ядерно-магнитным резонансом (ЯМР). Он выяснил, что атомные ядра отмечают свое присутствие за счет поглощения или излучения радиоволн при воздействии достаточно сильного магнитного поля.

Профессор Исидор И. Раби получил Нобелевскую премию за свою работу. В 1973 году Павел Лотербур, химик и исследователь ЯМР из Университета штата Нью-Йорк, получил первое ЯМР изображение.

Раймонд Дамадиан, врач и экспериментатор, работая в Даунстейтовском медицинском центре Бруклина, обнаружил, что сигнал водорода в раковой ткани отличается от здоровой ткани, потому что опухоли содержат больше воды. Чем больше воды, тем больше атомов водорода. После выключения аппарата МРТ, остаточные колебания радиоволн от раковой ткани длятся дольше, чем от здоровой ткани.

С помощью своих аспирантов, врачей Лоуренса Минкоффа и Майкла Голдсмита, доктор Дамадиан создал переносные катушки для мониторинга излучения водорода, и через некоторое время первый МРТ аппарат был сконструирован. 3 июля 1977 в течение почти пяти часов было проведено первое сканирование человеческого тела с помощью МРТ, а первые сканы пациента с раком груди были проведены в 1978 году.

Принцип работы МРТ

Магнитно-резонансная томография является медицинским диагностическим методом, который создает изображения тканей и органов человеческого тела с использованием принципа ядерного магнитного резонанса. МРТ может генерировать изображение тонкого среза ткани любой части человеческого тела - под любым углом и направлением. МРТ позволяет получить изображение человеческих органов и тканей с помощью электромагнитного поля.

МРТ создает сильное магнитное поле, а в организме человека есть своеобразные маленькие биологические " магниты ", состоящие из намагниченных протонов, входящих в состав атомов водорода. Протоны является основным элементом магнитных свойств тканей организма.

Во-первых, МРТ создает устойчивое состояние магнетизма в человеческом теле, когда тело помещено в постоянное магнитное поле. Во-вторых, МРТ стимулирует организм с помощью радиоволн, что меняет стационарную ориентацию протонов. В-третьих, аппарат останавливает радиоволны и регистрирует электромагнитную трансмиссию организма. В-четвертых, передаваемый сигнал используются для построения внутренних изображений тела с помощью обработки информации на компьютере.

МРТ изображение не является фотографическим. Это, на самом деле, компьютеризированная карта или изображение радиосигналов, излучаемых человеческим телом. МРТ превосходит по своим возможностям компьютерную томографию, так как не используется ионизирующее излучение как при КТ, а принцип работы основан на использовании безвредных электромагнитных волн.

Мощность магнитного поля

Магнитно-резонансная томография (МРТ) является многоплоскостным методом визуализации, основанном на взаимодействии между радиочастотным электромагнитным полем и некоторыми атомными ядрами в теле человека (обычно водорода), после помещения тела в сильное магнитное поле. Этот метод визуализации особенно качественно визуализирует мягкие ткани. Качество МРТ зависит не только от напряженности поля (выше 1 Тл считается высоким полем), но и от выбора катушки, использования контраста, параметров исследования, опыта специалиста, оценивающего полученное изображение и способного определить наличие патологии. Введение внутривенно контраста (гадолиния) часто используется при МРТ исследованиях. В настоящее время в МРТ аппаратах используется поле мощностью от 0.1 до 3.0 Т. В последние годы появились также томографы мощностью 7 Т, но их применение в клинике пока находится в стадии испытаний.

В клинической практике для аппаратов применяют следующую градацию аппаратов по мощности:

  • Низкопольные от 0.1 до 0.5 Т
  • Среднепольные от 0.5 до 0.9 Т
  • Высокопольные выше 1 Т
  • Сверх высокопольные 3.0 и 7.0 Т

Также подразделяют аппараты на открытого типа и закрытого (туннельного типа).

До последнего времени аппараты открытого типа были представлены только низкопольными аппаратами, но в настоящее время уже выпускаются и активно используются аппараты МРТ открытого типа с высоким полем (1 Т и более). Кроме того, появились аппараты для проведения исследований пациента в вертикальном положении или сидя. Разнообразие различных видов аппаратов МРТ позволяет очень широко использовать этот метод диагностики для определения морфологических изменений или функциональных нарушений при различных патологических состояниях.

Все аппараты можно условно разделить на низкопольные и высокопольные или открытого или туннельного типа.

Нередко пациенту трудно сделать выбор между проведением исследования на низкопольном или высокопольном аппаратах. Но между низкопольными и высокопольными аппаратами существует значительная разница.

Открытые (низкопольные) сканеры дают низкое качество изображений, и некоторые исследования для уточнения диагноза приходится повторять после низкопольных аппаратов на высокопольных аппаратах. Высокопольные МРТ аппараты с напряженностью магнитного поля (1 - 1,5-3.0 Тесла) обеспечивают высокое разрешение, которое позволяет визуализировать более детально структуру органов и тканей. Низкопольные аппараты МРТ обычно имеют мощность магнитного поля от 0.23 до 0.5 Тесла. Чем выше напряженность магнитного поля, тем лучше визуализация и более быстрее происходит сканирование. Существует прямая пропорция между увеличением мощности магнитного поля и качеством визуализации тканей.

МР аппараты сканируют тело слоями (срезами). Чем выше магнитное поле, тем срезы тоньше, что позволяет получить более детальную морфологическую картину тканей и, таким образом, более точно поставить диагноз.

Высокопольные МРТ требуют меньше времени на проведение исследования, благодаря более высокому магнитному полю. Высокопольные МРТ сканируют тело в полтора-два раза быстрее, чем аппараты низкопольные (открытого типа). Это очень важно, так как при длительном исследовании вероятность движения пациента и появления артефактов изображения увеличивается.

Высокопольные МРТ аппараты обеспечивают самые передовые методы визуализации, некоторые из которых не могут быть выполнены на аппаратах с низким магнитным полем.

Высокопольные аппараты МРТ постоянно совершенствуются для обеспечения большего комфорта для пациента и уменьшение беспокойства пациента во время проведения исследования. В последние годы были разработаны новые МРТ сканеры с существенно более короткой трубкой, что позволяет голове пациента быть снаружи отверстия магнита при выполнении ряда исследований. Отверстие магнита расширено в конце трубки, что уменьшает у пациента чувство замкнутого пространства, потому что голова пациента находится на пути к расширенному концу. Кроме того, отверстие имеет большую ширину, чем у более ранее сконструированных сканеров, что обеспечивает больше пространства вокруг пациента во время проведения исследования.

Тем не менее, у высокопольных аппаратов есть несколько минусов:

  1. Клаустрофобия. Небольшой процент пациентов боятся замкнутого пространства и не могут находиться внутри высокопольного аппарата. Подавляющему большинству этих пациентов бывает достаточно принять легкое седативное до проведения исследования.Но при наличии выраженной клаустрофобии проведение исследования на аппаратах туннельного типа таким пациентам бывает весьма затруднительно.
  2. Размер. МРТ-аппараты высокопольные имеют ограниченное пространство, и некоторые пациенты из-за больших размеров тела могут быть слишком велики, чтобы уместиться в туннеле МРТ аппарата. Некоторые высокопольные МРТ имеют также ограничения по весу.
  3. Боль. Если у пациента имеется сильный болевой синдром в спине, в шее или другие симптомы то это затрудняет возможность пациента лежать неподвижно в течение длительного периода.

Поэтому, низкопольные (открытого типа) аппараты МРТ могут быть более подходящим для некоторых пациентов, например, с истинной клаустрофобией или с большими размерами тела.


Теги: МРТ
Начало активности (дата): 14.10.2016 08:16:00
Кем создан (ID): 1
Ключевые слова: МРТ, 3 Тесла, история МРТ,