Связи и их реакции техническая механика. Простейшие типы связей. Виды связей и их реакции

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.

* * *

компанией ЛитРес .

2. Связи и реакции связей

Все тела делятся на свободные и связанные .

Свободные тела – это тела, перемещение которых не ограничено.

Связанные тела – это тела, перемещение которых ограничено другими телами.

Тела, ограничивающие перемещение других тел, называют связями .

Силы, действующие от связей и препятствующие перемещению, называют реакциями связей . Реакция связи всегда направлена с той стороны, куда нельзя перемещаться.

Всякое связанное тело можно представить свободным, если связи заменить их реакциями (принцип освобождения от связей).

Связи делятся на несколько типов.

Связь – гладкая опора (без трения) – реакция опоры приложена в точке опоры и всегда направлена перпендикулярно опоре.

Гибкая связь (нить, веревка, трос, цепь) – груз подвешен на двух нитях. Реакция нити направлена вдоль нити от тела, при этом нить может быть только растянута.

Жесткий стержень – стержень может быть сжат или растянут. Реакция стержня направлена вдоль стержня. Стержень работает на растяжение или сжатие. Точное направление реакции определяют, мысленно убрав стержень и рассмотрев возможные перемещения тела без этой связи.

Возможным перемещением точки называется такое бесконечно малое мысленное перемещение, которое допускается в данный момент.

Шарнирная опора. Шарнир допускает поворот вокруг точки закрепления. Различают два вида шарниров.

Подвижный шарнир. Стержень, закрепленный на шарнире, может поворачиваться вокруг шарнира, а точка крепления может перемещаться вдоль направляющей (площадки). Реакция подвижного шарнира направлена перпендикулярно опорной поверхности, так как не допускается только перемещение поперек опорной поверхности.

Неподвижный шарнир. Точка крепления перемещаться не может.

Стержень может свободно поворачиваться вокруг оси шарнира. Реакция такой опоры проходит через ось шарнира, но неизвестна по направлению. Ее изображают в виде двух составляющих: горизонтальной и вертикальной (R x , R y ).

Защемление, или «заделка». Любые перемещения точки крепления невозможны.

Под действием внешних сил в опоре возникают реактивная сила и реактивный момент М z , препятствующий повороту.

Реактивная сила представляется в виде двух составляющих вдоль осей координат:

R = R x + R y .

* * *

Приведённый ознакомительный фрагмент книги Техническая механика. Шпаргалка (Аурика Луковкина, 2009) предоставлен нашим книжным партнёром -

Связи и их реакции Свободное тело – это тело, которое может совершать из данного положения любые перемещения в пространстве. Несвободное тело – тело, перемещению которого в пространстве препятствуют какиенибудь другие, скрепленные или соприкасающиеся с ним тела. Связь – это все, что ограничивает перемещения данного тела в пространстве.

Силой давления на связь называется сила, действующая на тело, стремясь под действием приложенных сил осуществить перемещение, которому препятствует связь. Одновременно, по закону о равенстве действия и противодействия связь будет действовать на тело с такой же по модулю, но противоположно направленной силой. Силой реакции связи или просто реакцией связи называется сила, с которой данная связь действует на тело, препятствуя тем или иным его перемещениям. Направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу.

Направление реакции связи основных взаимодействий: Сферическ ий шарнир и подпятник Гладкая плоскость или опора Невесомый стержень Цилиндрически й шарнир (подшипник) Нить

Направление реакции связи основных взаимодействий: 1. Гладкая плоскость или опора. Такая поверхность не дает телу перемещаться только по направлению общего перпендикуляра к поверхности соприкасающихся тех в точке их касания.

Направление реакции связи основных взаимодействий: Когда одна из соприкасающихся поверхностей является точкой, то реакция направлена по нормали к другой поверхности.

Направление реакции связи основных взаимодействий: 2. Нить. Связь осуществляется в виде гибкой нерастяжимой нити. Она не дает удаляться телу от точки подвеса нити (.)А. Реакция Т натянутой нити направлена вдоль нити к точке подвеса.

Направление реакции связи основных взаимодействий: 3. Цилиндрический шарнир (подшипник) осуществляет такое соединение двух тел, при котором одно тело может вращаться по отношению к другому вокруг общей оси, называемой осью шарнира. Если тело АВ прикреплено с помощью такого шарнира к неподвижной опоре D, то (.)А тела не может при этом переместиться ни по какому направлению, перпендикулярному оси шарнира.

Направление реакции связи основных взаимодействий: 4. Сферический шарнир и подпятник. Тела, соединенные шарниром, могут как угодно поворачиваться одно относительно другого вокруг центра шарнира. Если тело прикреплено с помощью такого шарнира к неподвижной опоре, то (.)А тела не может при этом совершать никакого перемещения в пространстве.

Лекция 1

ВВЕДЕНИЕ. ОСНОВНЫЕ ПОНЯТИЯ СТАТИКИ

    Предмет механики.

    Основные понятия и аксиомы статики.

    Связи и реакции связей.

Предмет механики

Механика  это наука, изучающая основные законы механического движения, т.е. законы изменения взаимного расположения материальных тел или частиц в сплошной среде с течением времени. Содержанием курса теоретической механики в техническом вузе является изучение равновесия и движения абсолютно твердых тел, материальных точек и их систем. Теоретическая механика является базой для многих обще-профессиональных дисциплин (сопротивление материалов, детали машин, теория машин и механизмов и др.), а также имеет самостоятельное мировоззренческое и методологическое значение. Иллюстрирует научный метод познания закономерностей окружающего нас мира – от наблюдения к математической модели, её анализ, получение решений и их применение в практической деятельности.

Курс теоретической механики традиционно делится на три части:

Статика  изучает правила эквивалентного преобразования и условия равновесия систем сил.

Кинематика  рассматривает движение тел с геометрической стороны, без учета сил, вызывающих это движение.

Динамика  изучает движение тел в связи с действующими на них силами.

Основные задачи статики:

    Изучение методов преобразования одних систем сил в другие, эквивалентные данным.

    Установление условий равновесия систем сил.

Основные понятия и аксиомы статики

Сила  мера механического воздействия одного тела на другое. Физическая природа сил в механике не рассматривается.

Сила задается модулем, направлением и точкой приложения. Обозначается большими буквами латинского алфавита:
 модуль силы. Анали-

тически силу можно задать ее проекциями на оси координат: , , , а направление в пространстве  направляющими косинусами:
,
,
.

Совокупность нескольких сил, действующих на твердое тело, называется системой сил . Две системы сил эквивалентны () между собой, если, не нарушая состояния тела, одну систему сил можно заменить другой.

Сила, эквивалентная данной системе сил, называется равнодействующей :
. Не всегда систему сил можно заменить равнодействующей.

Систему сил, приложенную к свободному твердому телу, находящемуся в равновесии, и не выводящую его из этого состояния, называют уравновешенной системой сил
~ 0.

Абсолютно твердое тело  тело, у которого расстояние между любыми двумя точками остается неизменным.

Аксиомы:


Следствие : Точку приложения силы можно переносить вдоль линии действия силы.

Доказательство:

К телу в точке А приложена сила . Добавим в точке В систему сил,
:
.
, но
, следовательно,
. Следствие доказано.

    Две силы, приложенные к телу в одной точке, имеют равнодействующую, проходящую через эту точку и равную их геометрической сумме.

,

,

Из этой аксиомы следует, что силу можно разложить на любое количество составляющих сил по заранее выбранным направлениям.

    Силы взаимодействия двух тел равны по модулю и направлены по одной прямой в противоположные стороны.

    Равновесие деформируемого тела не нарушится, если это тело отвердеет.

Иными словами, необходимые условия равновесия деформируемых и абсолютно твердых тел совпадают, что позволяет применять получаемые результаты для реальных тел и конструкций, не являющихся абсолютно твердыми.

Связи и реакции связей

Тело называется свободным , если его перемещение в пространстве ничем не ограничено. В противном случае тело называется несвободным , а тела, ограничивающие перемещения данного тела,  связями . Силы, с которыми связи действуют на данное тело, называются реакциями связей .

Основные виды связей и их реакции:

Реакция гладкой поверхности направлена по нормали к этой поверхности (перпендикулярна общей касательной).

Реакция перпендикулярна опирающейся поверхности.

    Идеальная нить (гибкая, невесомая, нерастяжимая):

Примеры: моделирует трос, канат, цепь, ремень,…

Реакция идеальной нити направлена по нити к точке подвеса.

    Идеальный стержень (жесткий, невесомый стержень, на концах которого шарниры):

Реакция связи направлена по стержню.

В отличие от нити стержень может работать и на сжатие.

    Цилиндрический шарнир:

Такая связь позволяет телу перемещаться вдоль оси, поворачиваться вокруг оси шарнира, но не позволяет точке закрепления перемещаться в плоскости, перпендикулярной оси шарнира. Реакция лежит в плоскости, перпендикулярной оси шарнира, и проходит через нее. Положение этой реакции не определено, но она может быть представлена двумя взаимно перпендикулярными составляющими.

    Сферический шарнир:

Такая связь не дает точке закрепления тела перемещаться ни в одном из направлений. Положение реакции не определено, но она может быть представлена тремя взаимно перпендикулярными составляющими.

    Подпятник:

Реакция данной связи задается аналогично предыдущему случаю.

    Жесткая заделка:

Такая связь препятствует перемещению и повороту вокруг точки закрепления. Контакт тела со связью осуществляется по поверхности. Имеем распределенную систему сил реакции, которая, как будет показано, может быть заменена одной силой и парой сил.

Аксиома освобождаемости от связей:

Литература: [1 , §13];

[2 , §13];

[ 3 , п.1.11.4].

Все теоремы и уравнения статики выво-дятся из нескольких исходных положений, принимаемых без матема-тических доказательств и называемых аксиомами или принципами статики. Аксиомы статики представляют собою результат обобщений многочисленных опытов и наблюдений над равновесием и движением тел, неоднократно подтвержденных практикой. Часть из этих аксиом является следствиями основных законов механики, с которыми мы познакомимся в динамике.

Аксиома 1. Если на свободное абсолютно твердое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по модулю (F 1 = F 2) и направлены вдоль одной прямой в противоположные стороны (рис. 10).

Рис.10

Аксиома 1 определяет простейшую уравновешенную систему сил, так как опыт показывает, что свободное тело, на которое действует только одна сила, находиться в равнове-сии не может.

Аксиома 2. Действие данной си-стемы, сил на абсолютно твердое тело не изменится, если к ней прибавить или от нее отнять уравновешенную систему сил.

Эта аксиома устанавливает, что две системы сил, отличающиеся на уравнове-шенную систему, эквивалентны друг другу.

Следствие из 1-й и 2-й аксиом. Действие силы на абсо-лютно твердое тело не изменится, если перенести точку при-ложения силы вдоль ее линии действия в любую другую точку тела.

Рис.11

В самом деле, пусть на твердое тело действует приложенная в точке А сила (рис.11). Возьмем на линии действия этой силы произвольную точку В и приложим к ней две уравновешенные силы и , такие, что = , = . От этого действие силы на тело не изменится. Но силы и со-гласно аксиоме 1 также образуют уравновешенную систему, которая может быть отброшена. В резуль-тате на тело. Будет действовать только одна сила , равная , но приложен-ная в точке В .

Таким образом, вектор, изобра-жающий силу , можно считать приложенным в любой точке на линии действия силы (такой вектор называется скользящим).

Аксиома 3 (аксиома параллелограмма сил). Две силы, приложенные к телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю па-раллелограмма, построенного на этих силах, как на сторонах.

Вектор , равный диагонали параллелограмма, построенного на векторах и (рис.12), называется геометрической суммой векторов и : = + .

Рис.12

Величина равнодействующей

Рис. 1.3.

Конечно, Такое равен-ство будет соблюдаться только при условии, что эти силы направлены по одной пря-мой в одну сторону. Если же векторы сил окажутся перпендикулярными, то

Следовательно, аксиому 3 можно еще формулировать так: две силы, приложенные к телу в одной точке, имеют равнодействую-щую, равную геометрической (векторной) сумме этих сил и прило-женную в той же точке.


Аксиома 4. При всяком действии одного материального тела на другое имеет место такое же по величине, но проти-воположное по направлению противодействие.

Закон о равенстве действия и противодей-ствия является одним из основных законов ме-ханики. Из него следует, что если тело А дей-ствует на тело В с силой , то одновременно тело В действует на тело А с такой же по модулю и направленной вдоль той же прямой, но противоположную сторону силой = (рис. 13). Однако силы и не образуют урав-новешенной системы сил, так как они приложены к разным телам.

Рис.13

Аксиома 5 (принцип отвердевания). Равновесие изме-няемого (деформируемого) тела, находящегося под действием дан-ной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым).

Высказанное в этой аксиоме утверждение очевидно. Например, ясно, что равновесие цепи не нарушится, если ее звенья считать сва-ренными друг с другом и т. д.

Связи и их реакции.

По определению, тело, которое не скреплено с другими телами и может совершать из данного положе-ния любые перемещения в пространстве, называется свободным (например, воздушный шар в воздухе). Тело, перемещениям которого в пространстве препятствуют какие-нибудь другие, скрепленные или соприкасающиеся с ним тела, называется несвободным . Все то, что ограничивает перемещения данного тела в пространстве, будем называть связью.

Например, тело лежащее на столе - несвободное тело. Связью его является плоскость стола, которая препятствует перемещению тела вниз.

Очень важен так называемый принцип освобождаемости , которым будем пользоваться в дальнейшем. Записывается он так.

Любое несвободное тело можно сделать свободным, если связи убрать, а действие их на тело заменить силами, такими, чтобы тело оставалось в равновесии.

Сила, с которой данная связь действует на тело, препятствуя тем ила иным его перемещениям, называется силой реакции (противодействия) связи или просто реакцией связи.

Так у тела, лежащего на столе, связь - стол. Тело несвободное. Сделаем его свободным - стол уберем, а чтобы тело осталось в равнове-сии, заменим стол силой, направленной вверх и равной, конечно, весу тела.

Направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу. Когда связь одновременно препятствует перемещениям тела по нескольким направлениям, направление реакции связи также наперед неизвестно и должно определяться в результате решения рассматриваемой задачи.

Рассмотрим, как направлены реакции некоторых основных видов связей .

1. Гладкая плоскость (поверхность) или опора. Гладкой будем называть поверхность, трением о которую данного тела можно в первом приближении пренебречь. Такая поверхность не дает телу перемещаться только по направлению общего перпен-дикуляра (нормали) к поверхностям соприкасающихся тел в точке их касания (рис. 14,а ). Поэтому реакция N гладкой поверхности или опоры направлена по общей нормали к поверхностям сопри-касающихся тел в точке их касания и приложена в этой точке. Когда одна из соприкасающихся поверхностей является точкой (рис. 14,б ), то реакция направлена по нормали к другой поверх-ности.

Если поверхности не гладкие, надо добавить еще одну силу - силу трения , которая направлена перпендикулярно нормальной реакции в сторону, противоположную возможному скольжению тела.

Рис.14 Рис.15

Рис.16

2. Нить. Связь, осуществленная в виде гибкой нерастяжимой нити (рис.15), не дает телу М удаляться от точки подвеса нити по направлению AM . Поэтому реакция Т натянутой нити направлена вдоль нити от тела к точке ее подвеса. Если даже заранее можно догадаться, что реакция направлена к телу, все равно ее надо направить от тела. Таково правило. Оно избавляет от лишних и ненужных предположений и, как убедимся далее, помогает установить сжат стержень или растянут.

3. Цилиндрический шарнир (подшипник). Если два тела соединены болтом, проходящим через отверстия в этих телах, то такое соединение называется шарнирным или просто шарниром; осевая линия болта называется осью шарнира. Тело АВ , прикреплен-ное шарниром к опоре D (рис.16,а ), может поворачиваться как угодно вокруг оси шарнира (в плоскости чертежа); при этом конец А тела не может переместиться ни по какому направлению, перпен-дикулярному к оси шарнира. Поэтому реакция R цилиндрического шарнира может иметь любое направление в плоскости, перпен-дикулярной к оси шарнира, т.е. в плоскости А ху. Для силы R в этом случае наперед не известны ни ее модуль R , ни направле-ние (угол ).

4. Шаровой шарнир и подпятник. Этот вид связи закреп-ляет какую-нибудь точку тела так, что она не может совершать никаких перемещений в пространстве. При-мерами таких связей служат шаровая пята, с помощью которой прикрепляется фото-аппарат к штативу (рис.16,б ) и подшипник с упором (подпятник) (рис. 16,в ). Реакция R шарового шарнира или подпятника может иметь любое направление в пространстве. Для нее наперед неизвестны ни модуль реакции R , ни углы, образуемые ею с осями х, у, z .

Рис.17

5. Стержень. Пусть в какой-нибудь конструкции связью является стержень АВ , закрепленный на концах шарнирами (рис.17). Примем, что весом стержня по сравнению с воспринимаемой им нагрузкой можно пре-небречь. Тогда на стержень будут действовать только две силы при-ложенные в шарнирах А и В . Но если стержень АВ находится в равновесии, то по аксиоме 1 приложенные в точках А и В силы должны быть направлены вдоль одной прямой, т. е. вдоль оси стержня. Следовательно, нагруженный на концах стержень, весом ко-торого по сравнению с этими нагрузками можно пренебречь, работает только на растяжение или на сжатие. Если такой стержень является связью, то реакция стержня будет направлена вдоль оси стержня.

6. Подвижная шарнирная опора (рис.18, опора А ) препятствует движению тела только в направ-лении перпендикулярном плоскости скольжения опоры. Реакция такой опоры направлена по нормали к поверхности, на которую опираются катки подвижной опоры.

7. Неподвижная шарнирная опора (рис.18, опора В ). Реакциятакой опоры проходит через ось шарнира и может иметь любое направление в плоскости чертежа. При решении задач будем реакцию изображать ее составляющими и по направлениям осей координат. Если мы, решив задачу, найдем и , то тем самым будет определена и реакция ; по модулю

Рис.18

Способ закрепления, показанный на рис.18, употребляется для того, чтобы в балке АВ не возникало дополнительных напряжений при изменении ее длины от изменения температуры или от изгиба.

Заметим, что если опору А балки (рис.18) сделать тоже непо-движной, то балка при действии на нее любой плоской системы сил будет статически неопределимой, так как тогда в три уравнения равновесия вой-дут четыре неизвестные реакции , , , .

8. Неподвижная защемляющая опора или жесткая заделка (рис.19). В этом случае на заделанный конец балки со стороны опорных плоско-стей действует система распределенных сил реакций. Считая эти силы приведен-ными к центру А

Иногда приходится исследовать равновесие нетвердых тел. При этом будем пользоваться предположением, что если это нетвердое тело находится в равновесии под действием сил, то его можно рассматривать как твердое тело, используя все правила и методы статики.

Основные понятия и аксиомы статики

Статика – учение о силах и условиях равновесия материальных тел, находящихся под действием сил.

Сила – мера механического взаимодействия тел. Совокупность сил, действующих на абсолютно твердое тело, называется системой сил.

Абсолютно твёрдое тело - совокупность точек, расстояния между текущими положениями которых не изменяются, каким бы воздействиям данное тело ни подвергалось.

В статике решаются две задачи :

1. Сложение сил и приведение систем сил, действующих на тело к простейшему виду;

2. Определение условий равновесия действующих на тело систем сил.

Две системы сил называются эквивалентными , если они оказывают одинаковое механическое воздействие на тело.

Система сил называется уравновешенной (эквивалентной нулю), если она не изменяет механического состояния тела (то есть состояния покоя или движения по инерции).

Равнодействующей силой называется одна сила, если она существует, эквивалентная некоторой системе сил.

Силы, линии действия которых пересекаются в одной точке, называют сходящимися .

1. Аксиома о равновесии системы двух сил . Под действием двух сил, приложенных к абсолютно твердому телу, тело может находиться в равновесии тогда и только тогда, когда эти силы равны по величине и направлены вдоль одной прямой в противоположные стороны (рис. 1.1).

Рисунок 1.1

2. Аксиома о добавлении (отбрасывании) системы сил, эквивалентной нулю . Действие данной системы сил на абсолютно твердое тело не

изменится, если к ней прибавить или отнять уравновешенную систему сил (т.е. эквивалентную нулю).

Имеем систему ; добавим 0

Получим { ; }.

Следствие: При переносе силы вдоль её линии действия, действие этой силы на тело не меняется. Из этого следствия вытекает, что сила приложенная к абсолютно твёрдому телу представляет собой скользящий вектор.

Пусть в точке А твердого тела приложена сила (рис.1.2). К этой силе на ее линии действия в точке В в соответствии с аксиомой II добавим систему сил , эквивалентную нулю, для которой . Выберем силу , равную силе .

Рисунок 1.2

Полученная система трех сил эквивалентна, согласно аксиоме о добавлении равновесной системе сил, силе , то есть .

Система сил , согласно аксиоме 1, эквивалентна нулю, и согласно аксиоме 2 ее можно отбросить. Получится одна сила , приложенная в точке В , то есть . Окончательно получаем . Сила приложена в точке А . Она эквивалентна такой же по модулю и направлению силе , приложенной в точке В , где точка В – любая точка линии действия силы . Теорема доказана: действие силы на твердое тело не изменится от переноса силы вдоль линии действия. Силу для твердого тела можно считать приложенной в любой точке линии действия, то есть сила – скользящий вектор. Как скользящий вектор сила характеризуется: численным значением (модулем) ; направлением силы ; положением линии действия силы на теле.

3.Аксиома параллелограмма сил. Две силы , приложенные в одной точке абсолютно твердого тела, имеют равнодействующую силу , приложенную в той же точке и равную геометрической (векторной) сумме этих сил (рис.1.3).

Рисунок 1.3

Следствие: Теорема о трех не параллельных силах: Если под действием трех сил тело находится в равновесии и линии действия двух сил пересекаются, то все силы лежат в одной плоскости и их линии действия пересекаются в одной точке.

Рисунок. 1.4

Положим, что тело находится в равновесии под действием трех сил , 3 , приложенных в точках А, В, С (рис.1.4). По 3 аксиоме равнодействующая первых двух сил может быть найдена по правилу параллелограмма, построенного на силах 1 и 2, перенесенных вдоль линии их действия в точку О пересечения последних, т. е. . Согласно первой аксиоме статики для равновесия тела необходимо и достаточно, чтобы сила 3 была уравновешивающей двух первых сил. Это возможно только в том случае, когда силы и 3 лежат на одной прямой и имеют противоположные направления. Но тогда линии действия сил , 3 пересекутся в одной точке О. Любая из трех данных сил уравновешивает две другие. Выведенное условие равновесия трех не параллельных сил является необходимым, но не достаточным. Если линии действия трех сил пересекаются в одной точке, то отсюда вовсе не следует, что эти три силы представляют собой уравновешенную систему сил.

4. Аксиома о равенстве сил действия и противодействия. При всяком действии одного тела на другое имеет место такое же численно, но противоположное по направлению противодействие (III закон Ньютона). Силы взаимодействия двух тел не составляют систему уравновешенных сил, так как приложены к разным телам.


Рисунок 1.5

5. Аксиома о связях. Материальные объекты (тела и точки), которые ограничивают свободу перемещения рассматриваемого твердого тела, называются связями. Сила, с которой связь действует на тело, препятствуя его перемещению, называется реакцией связи. Реакция связи направлена противоположно возможному перемещению тела. Аксиома связей утверждает, что всякую связь можно отбросить и заменить силой или системой сил (в общем случае), то есть реакциями связи.

6. Аксиома затвердевания. Равновесие деформируемого тела, находящегося под действием данной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым). Если деформируемое тело находилось в равновесии, то оно будет находиться в равновесии и после его затвердевания.

Основные виды связей и их реакции

Приведем примеры связей для плоской системы сил и их замены силами реакций связей.

1. Гладкая поверхность (рис.1.6,а). Если тело опирается на идеально гладкую поверхность, то реакция поверхности направлена по нормали к общей касательной поверхностей тел в точке соприкосновения.

2. Подвижная шарнирная опора, подвижный шарнир – опора, поставленная на катки, не препятствующие перемещению тела параллельно опорной плоскости. Реакция подвижного шарнира направлена по нормали к поверхности, на которую опираются катки шарнира (рис.1.6,б).

а)
б)


3. Неподвижная шарнирная опора, неподвижный шарнир – совокупность неподвижного валика и надетой на него втулки с твердым телом, вращающимся вокруг оси (подшипник, петля). Реакция неподвижного шарнира проходит через ось валика, в неизвестном направлении, поэтому определяют две ее составляющие, направленные параллельно осям координат, перпендикулярных оси валика (рис. 1.6, в).

4. Жесткая заделка – жестко закрепленная балка, стержень. Связь препятствует любому движению конца балки. Для определения реакции жесткой заделки необходимо определить составляющие главного вектора R А, направленные параллельно осям координат и главный момент М А заделки (рис. 1.6, г).

5. Стержень – жесткий невесомый стержень, концы которого соединены с другими частями конструкции шарнирами. Реакция направлена по линии, проведенной через опорные шарниры стержня (рис. 1.6, д).

6. Гибкая связь – нить, цепь, трос. Реакция приложена к твердому телу в точке соприкосновения и направлена по связи (рис. 1.6, е).